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Abstract

Terrestrial photosynthesis is the largest and one of the most uncertain fluxes in the global carbon cycle. 

We find that NIRV, a remotely sensed measure of canopy structure, accurately predicts photosynthesis at 

FLUXNET validation sites at monthly to annual timescales (R2 = 0.68), without the need for difficult to 

acquire information about environmental factors that constrain photosynthesis at short timescales. Scaling 

the relationship between GPP and NIRV from FLUXNET eddy covariance sites, we estimate global 

annual terrestrial photosynthesis to be 147 Pg C y-1 (95% credible interval 131-163 Pg C y-1), which falls 

between bottom-up GPP estimates and the top-down global constraint on GPP from oxygen isotopes. 

NIRV-derived estimates of GPP are systematically higher than existing bottom-up estimates, especially 

throughout the mid-latitudes. Progress in improving estimated GPP from NIRV can come from improved 

cloud-screening in satellite data and increased resolution of vegetation characteristics, especially 

photosynthetic pathway.
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1. Introduction

Terrestrial photosynthesis (or gross primary production (GPP)) is responsible for fixing somewhere 

between 119 and 169 Pg C y-1, making GPP both the largest and most uncertain component of the 

global carbon cycle (Anav et al., 2015).  Carbon fixed by  photosynthesis in turn provides the basis   for 

practically all life on land, providing a strong motivation for improving global estimates of GPP.    It is 

especially important to understand how photosynthesis might respond to global environmental change, 

as minor perturbations in terrestrial productivity have implications for global biodiversity, agriculture, 

and climate change (Rockstr¨om et al., 2009; Running, 2012).

A global network of eddy covariance measurements of land surface CO2 exchange serves as the 

primary basis for quantifying terrestrial photosynthesis at both the site and global scale (Baldocchi, 

2008; Baldocchi et al., 2001). Despite their utility, eddy covariance measurements are limited in both 

time and space; individual flux sites measure CO2 fluxes over approximately 1 km2 and, in any given 

year, fewer than 100 sites operate globally (Kumar et al., 2016). Nevertheless, these sparse 

measurements are the best available data both for studying ecosystem-scale photosynthetic processes at 

the global scale and for validating terrestrial ecosystem models, which operate globally at resolutions 

typically much greater than a single kilometer and need to integrate over processes with time constants 

from a fraction of a second to many years.

In response to the sparseness of photosynthesis observations, a host of semi-empirical upscaling 

approaches have emerged for translating site-level CO2 fluxes to globally gridded photosynthesis 

estimates. Upscaling depends on the assumption that functional relationships between driver variables and 

GPP operate the same way at measured and unmeasured sites. Though many upscaling schemes exist, two 

approaches are by far the most widely used: machine learning (Beer et al., 2010; Tramontana et al., 2016) 

and satellite-driven mechanistic models (Running et al., 2004; Ryu et al., 2011). Both approaches 

integrate some combination of site-level abiotic characteristics, plant traits, and meteorology to estimate 

photosynthesis, using in situ fluxes from eddy covariance installations to calculate scaling factors that 

allow estimation of photosynthesis beyond tower footprints. Such approaches have been quite successful, 

allowing for both the investigation of the drivers of global photosynthesis (Jung et al., 2017; Zhao et al., 

2010) and more extensive benchmarking of photosynthesis models by expanding the temporal and spatial 
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availability of photosynthesis estimates (Bonan et al., 2011; Williams et al., 2009).

Any upscaling introduces uncertainties into GPP estimates, stemming both from model

formulation and input data. Machine learning approaches, for example, provide the best possible 

constraint on GPP based on available data, but they functionally operate as black boxes. Such complexity 

makes it difficult to diagnose the causes and consequences of uncertainty. Upscaling approaches are also 

limited by the availability of and the uncertainties contained within input datasets (e.g., meteorological 

data). Combined, these challenges limit the utility of existing upscaling approaches for improving our 

process-based understanding of photosynthesis and determining the true value of global GPP. Of 

particular concern is the large and persistent disconnect between upscaled estimates of global GPP and 

higher estimates derived from top-down isotopic

constraints (Welp et al., 2011).

Here, we report a novel approach for estimating global GPP using the near-infrared reflectance of 

vegetation (NIRV) that takes conceptual root in ideas going back more than 40 years. Even before the 

widespread use of remote sensing in vegetation analyses, Monteith (1977) observed that the annual 

increment in biomass growth (net primary production; NPP) can be estimated as the product of the annual 

absorption of solar radiation and a radiation use efficiency that is relatively constant across species. 

Several early remote sensing studies built on this idea, documenting the strong correlation between 

biomass accumulation and the annual integral of the normalized vegetation index (NDVI) (Goward et al., 

1985; Tucker et al., 1985). While these approaches for estimating NPP worked well at the annual scale, 

short-term responses were inconsistent and variable across sites (Running et al., 1988). Progress in 

improving the performance of NDVI-based productivity models came from a mix of incorporating 

additional information about vegetation type, meteorology, and physiological stress. As a result, 

integration approaches gradually transitioned to more physiologically grounded models, which attempt to 

represent the biochemical processes (e.g., carbon fixation by rubisco) and physiological stress responses 

(e.g., stomatal closure due to low soil moisture) that control photosynthesis (Field et al., 1995; Myneni et 

al., 1995; Potter et al., 1993; Running et al., 2004; Sellers et al., 1996). Though inclusion of biochemical 

and physiological processes made photosynthesis models more robust at shorter timescales, it introduced 

the vexing problem of needing to independently specify key physiological parameters, such as the 

maximum rate of carboxylation of rubisco (VCmax). Inconsistencies in model parameterization schemes, in 

turn, give rise to large divergences in model-based estimates of GPP and reveal fundamental uncertainties 
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in our understanding of the controls on photosynthesis at the global scale (Schaefer et al., 2012).

We revisit the early strategies for directly relating integrated satellite measurements to plant 

productivity. Our approach employs the near-infrared reflectance of vegetation (NIRV), a new satellite 

product that approximates the proportion of near-infrared  light  reflected  by  vegetation. NIRV offers 

several advantages over existing satellite vegetation indices. Namely, NIRV has a robust physical 

interpretation, as it relates directly to the number of NIR photons reflected  by  plants (Badgley et al., 

2017). As a result, NIRV minimizes both the effects soil contamination and variable viewing geometry on 

satellite-derived spectra. Consequently, NIRV serves as a comprehensive index  of light capture, 

integrating the influence of leaf area, leaf orientation, and overall canopy structure.

We  hypothesize that, to the extent plants allocate resources efficiently (Bloom et al., 1985; Field        et 

al., 1995), this integrated measure of investment in light capture should scale with the capacity to fix 

CO2, providing a strong basis for new, satellite-derived estimates of GPP.

To test this hypothesis, we use the relationship between NIRV and in situ measurements of GPP 

derived from eddy covariance. We present our results in three parts. First, we validate the

NIRV-GPP relationship at the site scale, contrasting the NIRV approach with other remote sensing, 

statistical, and physiological models of GPP. Second, we extend the relationship to consider global 

GPP.  Third, we  evaluate some of the limitations in the global dataset of NIRV  and discuss options   for 

refining the approach.

2. Materials and Methods

2.1. Data

We compared NIRV, which is the product of the normalized difference vegetation index (NDVI) and NIR 

reflectance (NDV I · NIR), against monthly and annual GPP fluxes at 105 flux sites contained  in the 

FLUXNET2015 Tier 1 dataset that met quality control requirements and fell within the time frame of the 

MODIS record (2003-present).  We  calculated median NDVI and NIR for all daily  scenes overlapping a 

1km2 circle around each fluxsite, using 500 meter, daily red (620-670nm) and near-infrared (NIR, 841-
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876nm) nadir-adjusted reflectances from MODIS collection MCD43A4.006 hosted on Google Earth 

Engine for the years spanning 2003 to 2015 (Schaaf et al., 2015). Prior to estimating mean NIRV, gaps in 

reflectance data of up to seven days were filled using linear interpolation. We  calculated the average of 

all NIRV  observations for each month and compared  them with monthly estimates of GPP from the 

FLUXNET2015 dataset (variable name:

GPP VUT MEAN). We required all site-months to have over 75% valid GPP observations  and required 

site-years to have a minimum of 9 months of data. We gridded the MCD43A4.006 dataset to 0.5◦ by 

averaging all 500 meter pixels whose center fell within each 0.5◦ grid cell for the global upscaling. No 

additional gap filling, apart from those procedures inherent in the production of the underlying daily 

reflectance values (see Schaaf et al., 2002), was used in regridding. Missingness of NIRV data at both the 

site and global scale due to quality control issues (e.g., clouds) was minimal (Fig. S1).

In addition to the site-level comparisons, we evaluated NIRV-based GPP estimates against two 

existing models of GPP: FLUXCOM, a machine learning approach for upscaling FLUXNET 

observations (Tramontana et al., 2016), and the Breathing Earth System Simulator (BESS), a 

physiologically based land surface model that has been extensively benchmarked against eddy covariance 

measurements of GPP (Jiang et al., 2016; Ryu et al., 2011). For FLUXCOM, we used the mean ensemble 

of annual GPP HB fluxes from FLUXCOM CRUNCEPv6, available from http://www.fluxcom.org/CF-

Download/. For BESS, we used GPP from BESS V1, downloaded from http://environment.snu.ac.kr/bess 

flux/. Site-level RMSE values for FLUXCOM and BESS were derived from data provided by the authors 

(Jiang et al., 2016; Tramontana et al., 2016). We compared models using an Akaike Information Criterion 

(AIC) based approach that simultaneously evaluates model accuracy and penalizes model complexity (see 

Supplementary Text 1 for details). AIC values were calculated for NIRV, BESS, and FLUXCOM using 

only site-years shared across all three products.

2.2. Calibration

We used Bayesian estimation to relate NIRV and ecosystem type to GPP at both monthly and annual 

timescales. Bayesian estimation allowed us to fit slope and intercept, as well as hierarchical variance 

terms capturing site-level random effects (random deviations from the global slope and intercept per site) 

and error variance (Gelman et al., 1995). Because Bayesian estimation yields a joint posterior distribution 

http://www.fluxcom.org/CF-Download/
http://www.fluxcom.org/CF-Download/
http://environment.snu.ac.kr/bess
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of parameter estimates, upscaling from the model posterior allows us to accurately propagate multiple 

sources of uncertainty, including joint uncertainty in the model fixed structure (i.e. slope and intercept of 

the GPP NIRV relationship) and the random effects (i.e. unexplained site-to-site variation and residual 

variation in the training dataset). The best model, according to the Deviance Information Criteria (DIC; 

an AIC-like score modified for Bayesian models), consists of a single, near-zero y-intercept and differing 

slopes for evergreen, deciduous, and crop ecosystem types. The model includes two additional terms: a 

random site-level intercept term and an error term, both of which were specified as normal distributions 

with mean of 0 and variance exponentially related to NIRV. See Supplementary Text and Table S1 for a 

full description of the  model structure and the Markov chain Monte Carlo fitting procedure, as well as 

alternative model structures tested. We performed ecosystem type-stratified ten-fold cross-validation at 

the site level (e.g., leaving out 20% of sites from each ecosystem type) to confirm that the final model 

was not overfit (Fig. S2). Calibration sites were distributed throughout the global range of observed 

annual NIRV, though there were only three sites with annual NIRV above 2.5 (Fig. S3). In total, the final 

calibration dataset included data from 105 eddy covariance sites, comprising 526 site-years.

2.3. Upscaling

We produced global annual estimates of GPP using 1000 samples from the joint model posterior for all 

0.5◦ vegetated land pixels from 2005 to 2015. For each posterior sample (i.e. each joint set of scaling and 

variance parameter estimates), we calculated per-pixel GPP using the scaling parameters for the 

ecosystem type, a random draw from the site-level error distribution for each pixel and a random draw 

from the residual error distribution for each pixel-year. Using the site-level model for our global 

upscaling captured correlations between parameter estimates (scaling slope and site-level variance 

estimates were often correlated), resulting in GPP estimates that appropriately represent statistical, site, 

and residual uncertainty from the full joint posterior distribution of the model. We present the median and 

95% credible intervals from the distribution of the 1000 global GPP estimates.

3. Results & Discussion



8

This article is protected by copyright. All rights reserved

3.1. Site-level Validation

NIRV, combined with information on ecosystem type (deciduous, evergreen, and crop) explained   68% 

of the variation in annual GPP at 105 eddy covariance monitoring sites (526 site-years that  passed 

quality-control and data completeness requirements) and had an RMSE of 0.36 kg C m-2 y-1 (Fig. 1). At 

the monthly scale, the same model explained 56% of monthly variation in GPP with an RMSE of 0.08 kg 

C m-2 mo-1 (Fig. 1, inset). At the annual scale, we found that the normalized difference vegetation index 

(NDVI) and the fraction of absorbed photosynthetic radiation (fPAR)   (two popular vegetation indices) 

were worse predictors than NIRV, explaining 59% and 52% percent of the variation in annual GPP fluxes. 

The accuracy of NIRV far exceeded both NDVI and fPAR in terms of RMSE (Table S2). Importantly, the 

NIRV-GPP relationship was consistently linear across all values of GPP (Fig. S4). The most parsimonious 

model included just three ecosystem types, with a single intercept and separate NIRV-GPP slopes for sites 

with i) evergreen, ii) deciduous, and iii) crop ecosystem types. The model also accounted for variance in 

both residual error and site-level random intercepts that increased as a function of NIRV (Fig. S5). 

Dividing ecosystems into a greater number of types resulted in minor model improvements, but an almost 

identical DIC with more parameters, causing us to adopt the simpler three ecosystem type model.

The site-level performance of NIRV-derived GPP compared favorably against BESS and FLUXCOM, 

when evaluated across overlapping site-years (Fig. 1b). The RMSE of site-level NIRv-based GPP 

estimates was 42% lower than estimates from BESS and 57% higher than estimates from FLUXCOM, 

the machine learning-based upscaling product. However, taking model complexity into account by using 

the Akaike Information Criterion (AIC) and using conservatively low estimates for number of fitted 

parameters in the alternative approaches, the NIRV  approach had a far lower    AIC than either BESS or 

FLUXCOM. This indicates that NIRV better balances model accuracy  against model complexity and 

thereby has a lower likelihood of overfitting the site-level data. Strong performance at validation sites, 

especially relative to leading statistical and physiological based estimates of GPP, demonstrates that 

NIRV provides a robust basis for global estimates of GPP.

Furthermore, the NIRV approach requires no additional information on meteorological conditions, 

such as site temperature, vapor pressure deficit, or incoming radiation. Residuals in observed GPP relative 
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to NIRV-derived GPP estimates showed only weak relationships with meteorological variables (Fig. 2). 

For site-years with especially high values of annual precipitation, model accuracy was slightly improved 

by including precipitation in the model. Similarly, compound meteorological indices, like the ratio of 

precipitation to potential evapotranspiration (“aridity index”) had only a weak relationship with GPP 

residuals (Fig. S7). Including all available meteorological data boosted R2 by only 0.04, from 0.68 to 0.72 

(Table S3), but led to a higher DIC, which indicates that the base NIRV model better generalizes for 

predictive purposes. Models combining individual meteorological variables with NIRV showed similar 

small improvements in R2 and RMSE, accompanied by increased DIC.

Interestingly, model residuals had only a weak relationship with annual PAR (Fig. 2d, p=0.01, 

R2=0.01). Light is the primary driver of photosynthesis at shorter time scales, suggesting that it should be 

the leading candidate for improving model predictions. This was not the case for estimates based on 

integrated NIRV. In fact, including data on integrated PAR decreased the strength of the NIRV-GPP 

relationship (Figs. S4d and S6). Such a pattern could result  from  NIRV  already integrating relevant 

information about site-level radiation or have more to do with the uncertainties inherent in global 

radiation observations.  We  also found that model residuals at the annual time   scale had no relationship 

with site-level cloudiness, indicating that NIRV alone  captured  the integrated effect of seasonal variation 

in sunny and cloudy conditions without the need for separately considering PAR (Fig. S8). By requiring 

fewer inputs, NIRV-based upscaling of GPP reduces uncertainty from those inputs.  It also allows the 

approach to be applied across a wide range of   spatial and temporal scales where such data might not be 

available.

3.2. Global Upscaling

Applying the site-level scaling to globally resolved measurements of NIRV, we estimated the median 

value of global annual GPP from 2003 to 2015 to be 147 Pg C y-1, with a 95% credible interval of 131-

163 Pg C y-1. This median GPP estimate is intermediate between estimates from bottom-up models and 

constraints from O2 isotopes. FLUXCOM places annual GPP at 118 Pg C y-1, while BESS puts mean 

global GPP at 122 Pg C y-1. Based on a meta-analysis, the full range of terrestrial ecosystem models 

estimate annual to be between 119 and 169 Pg C y-1 (Anav et al., 2015). The Multi-Scale Synthesis and 

Terrestrial Model Intercomparison Project (MsTMIP) provides a similar range of estimates across 15 
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different terrestrial ecosystem models, with our NIRV-derived GPP estimate falling on the high side of 

those model estimates (Fig. S9). O2 isotopic measurements are consistent with global annual GPP in the 

range of 150 to 175 Pg C y-1 (Welp et al., 2011).

The spatial distribution of NIRV-derived GPP is broadly consistent with previous global GPP estimates 

(Fig. 3). As expected, GPP is concentrated in the tropics and declines toward the poles. On a per biome 

basis, tropical forests contribute the most, accounting for 31% of global GPP; FLUXCOM and BESS 

attribute 34% and 33% of GPP to tropical forests, respectively. Though lower in relative terms, NIRV-

derived GPP in tropical forests is 15% higher than both FLUXCOM and BESS GPP estimates. Differences 

were even larger at higher latitudes, where NIRV assigns higher productivity to midlatitude mixed forests, 

grasslands, and shrub-dominated ecosystems (Fig. 3b; Table S4). One explanation for this pattern is that 

NIRV minimizes soil contamination that might cause alternative remote sensing approaches to 

systematically underestimate leaf area across the midlatitudes. Consistent with this view, a recent study 

that combined solar-induced chlorophyll fluorescence with a terrestrial ecosystem model reports similar 

relative increases in extratropical GPP (Norton et al., 2018).

On a per pixel basis, NIRV GPP estimates are strongly linear with GPP estimates from both 

FLUXCOM and BESS at the annual time scale. R2 exceeds 0.90 and RMSE is below 0.4 kg C m-2 y-1 for 

both products (Fig. S11). Comparison of NIRV to GPP estimates from the MODIS GPP algrorithm shows 

similar performance (Fig. S12). This consistency is striking, given that the NIRV approach requires only 

two inputs (NIRV and ecosystem type). By contrast, both FLUXCOM and BESS require numerous 

environmental inputs. While broadly consistent, the comparison also emphasizes that NIRV-derived GPP 

estimates are typically higher, exceeding FLUXCOM GPP by a median value of 0.24 kg C m-2 y-1 and 

BESS GPP by 0.21 kg C m-2 y-1. There is no obvious reason that NIRV might be biased high. It might be 

tempting to think that physiological stress, which is not explicitly accounted for by NIRV, might explain 

the higher GPP from this approach. However, the NIRV-based approach uses the annual sum of both 

NIRV and measured GPP, meaning

NIRV-derived GPP estimates are calibrated to include all of the stress effects at FLUXNET sites, when 

integrated to the annual scale. Such an interpretation is supported by the weak correlations between 

model residual GPP and numerous meteorological variables. If NIRV failed to capture the effects of lower 

precipitation or higher VPD on plant productivity, we would expect these environmental variables to 

explain additional variations in annual GPP. Yet meteorological variables provide little additional 
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predictive power, meaning the annual NIRV-based GPP estimates could be biased upwards only if 

FLUXNET sites are systematically biased toward low-stress locations or the FLUXNET2015 GPP 

estimates are biased towards good years where stress did not limit photosynthesis. Of course, such biases 

would affect any upscaling approach calibrated to the FLUXNET2015 dataset.

Similarly, using the same satellite data at both the site and global scales minimizes the likelihood that 

systematic errors or biases in the retrieval of NIRV  affect our estimates of GPP; any error or    bias in 

NIRV should be accounted for by our site-level calibration. There is little evidence for systematic biases 

in our model fit (Figs. 1 and S10). However, even in two worst-case scenarios of systematic bias 

(overprediction at low productivity sites or underprediction at  high  productivity sites), neither maximum 

credible bias would affect our annual global estimate by more than 10%, which is considerably smaller 

than the 30 Pg C y-1  credible interval  around our mean estimate and  the differences between our 

estimate and either BESS or FLUXCOM (Fig S10). Alternatively, both BESS and FLUXCOM might 

systematically underestimate true GPP,  an interpretation consistent  with the constraint from oxygen 

isotopes (Welp et al., 2011). Resolving this discrepancy represents an important next step in the study 

photosynthesis at the global scale.

3.3. Uncertainty Analysis

Model parsimony, combined with Bayesian estimation, allows us to propagate three sources of 

uncertainty for each pixel based on the uncertainties quantified in model calibration: statistical (variation 

in per ecosystem type scaling in the model posterior distribution), site (deviation of each pixel’s 

intercept from the global relationship for that ecosystem type), and residual (otherwise unexplained 

error). Median per pixel uncertainty is 0.20 kg C m-2 y-1.  Total  uncertainty,  comprising all three 

sources of error, peaks in the tropics where total annual NIRV is highest.  In the worst case,  the 95% 

credible interval of GPP exceeds 0.75 kg C m-2 y-1 in the Amazon basin and Indonesia (Fig. 4a). Given 

that tropical forests constitute the highest proportion of GPP (exceeding 30%) and have relatively few 

flux measurements, high uncertainty throughout the tropics significantly contributes to the overall 

uncertainty of global GPP estimates, regardless of approach.

Bayesian upscaling allows the uncertainties in parameter estimation from the site-level calibration to 
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be projected globally; two examples of pixel-level uncertainties are shown in Fig. 4b.  GPP estimated 

for each pixel fully contains the uncertainties present in the FLUXNET2015 dataset, providing added 

confidence in the robustness of credible range of estimated GPP. Outside of pixels with especially low 

NIRV, statistical uncertainty is always lowest in both relative and absolute terms, indicating minimal 

uncertainty in per ecosystem type scaling. On average, site uncertainty is always largest, meaning there 

is more uncertainty in the NIRV-GPP relationship from site to site (primarily    in the site-level intercept, 

Fig. S5) than inter-annual variation (encompassed by residual uncertainty)  in the NIRV-GPP 

relationship at a single site. Site-to-site  variability  is  randomly  distributed, showing no relationship 

with site climate (Fig. S13), thus highlighting retrieval errors (e.g., soil reflectance, clouds) in NIRV and 

inherent uncertainties in eddy covariance derived GPP estimates as the likely cause of site-level 

uncertainty.

NIRV provides a novel approach for estimating GPP that combines a very simple formulation with 

excellent performance at validation sites (Fig. 1). As such, the NIRV approach is largely independent of 

existing semi-empirical and process-based upscaling approaches. Furthermore, the NIRV approach 

achieves strong quantification of uncertainties while maintaining parsimony. This combination of 

simple calculation plus straightforward analysis and partitioning of uncertainty between model structure 

and inputs makes NIRV a useful tool for revisiting and revising long-standing assumptions about the 

global controls of photosynthesis.

The strong correlation of NIRV and GPP at FLUXNET calibration sites provides prima facie evidence 

for the hypothesis that plants allocate resources such that the potential to harvest light (controlled by 

canopy architecture) and the potential for CO2 fixation (controlled by physiology and biochemical 

capacity) are held in balance. To further test this hypothesis, we examined differences in the strength of 

the NIRV-GPP relationship at successively longer integration times for evergreen (of which all but one 

were located in the temperate latitudes) and deciduous validation sites. Relative to evergreens, deciduous 

leaves have higher photosynthetic rates and must recoup the cost of constructing leaves over a short 

period of time. Alternatively, evergreen canopies amortize the cost of leaf construction and maintenance 

over a year or more and, as a result, have less flexibility to respond to short-term perturbations in resource 

availability (Chabot et al., 1982). Given these contrasting strategies, we expect that NIRV at deciduous 

sites should track GPP just as well at short time scales as it does at longer time scales, while as integration 

time increases from days to months, the performance of NIRV as a predictor of GPP should increase at 
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evergreen sites. This is exactly the pattern found at the FLUXNET validation sites, which we tested using 

Bonferroni adjusted t-tests (Fig. 5). At deciduous sites, NIRV is no more powerful at explaining daily GPP 

fluxes than it is at explaining fluxes integrated to 90 days (p > 0.05, Bonferroni adjusted). While at 

evergreen sites, NIRV is a significantly stronger predictor of GPP at 90 days than at the daily time scale (p 

< 0.001; Bonferroni adjusted). Interestingly, by seven days, the difference in performance between 

deciduous and evergreen sites is statistically indistinguishable (p > 0.05; Bonferroni adjusted). As noted 

above, the analysis only included one evergreen tropical forest site (GF-Guy), meaning these results 

should primarily be interpreted as applying to temperate ecosystems.

The coupling of NIRV and GPP even holds during drought events. During the 2012 North American 

drought, NIRV showed characteristic early spring green-up, conforming with the

spring-ward shift of both carbon and water fluxes documented by Wolf et al. (2016). With the onset of 

drought at severely drought affected site US-MMS, both NIRV and GPP rapidly declined in parallel, 

resulting in a similar NIRV-GPP relationship as that of non-drought years (Figs. S14a and S14b). Thus, 

the coupling between the components of canopy structure that influence NIR reflectance and stress-

constrained canopy photosynthetic capacity remains strong even at the short timescale of acute stress 

events. Notably, NDVI showed little deviation compared to non-drought years during the same period 

(Fig. S14c). The extent of the coupling between canopy structure and productivity at sub-annual time 

scales likely varies by ecosystem type, making the study of

NIRV-GPP dynamics under drought conditions an important area of future study.

On an instantaneous basis, environmental factors like water, light, and temperature combine with

leaf-level biochemical capacity to dictate the rate of photosynthesis (Farquhar et al., 1980). The accuracy 

of NIRV for estimating GPP, without the need for additional inputs like total incoming radiation (Fig. 2), 

does not imply that environmental factors are irrelevant to photosynthesis, but rather that, when integrated 

over the appropriate time interval, canopy architecture and the physiological controls on photosynthesis 

are coordinated. This interpretation of the NIRV-GPP relationship also helps explain why including 

meteorological data does little to improve the accuracy of NIRV-derived GPP estimates. If integrated 

levels of temperature, light, and water availability (as well as nutrients) jointly determine canopy 

development and physiological potential, then canopy structure, as summarized by NIRV, should contain 

the information necessary to accurately estimate GPP. The minor improvement from including 

meteorological data likely indicates that no single linear relationship between one or even multiple 
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meteorological variables accounts for the large number of possible combinations of meteorology and 

plant response (Fig. 2 and Table S3).

A major strength of the NIRV approach is that it allows statistically valid error propagation (Fig. 4). 

More complicated approaches for upscaling GPP make it difficult to accurately partition sources of error, 

especially model structural errors and errors due to input uncertainties. FLUXCOM, for example, 

functionally operates as a black box, limiting our ability to draw biological inferences about the global 

controls of GPP from the model itself. With the NIRV-based approach, three sources of error warrant 

consideration. First, it could be the case that even though NIRV captures many of the controls of GPP, the 

slowly shifting integrator of NIRV might contain delays and inconsistencies that introduce uncertainties in 

the NIRV-GPP relationship. Second, the coordination of structure and physiology might be imprecise, 

failing to account for some of the factors that influence GPP. Third, there are almost certainly 

measurement errors in the NIRV and GPP datasets used for calibration. The latter two possibilities are 

strongly suggested by the predominance of site-level error (Fig. 4b and Fig. S5), which indicates that either 

the physiology controlling the NIRV-GPP relationship varies from site to site or that the NIRV 

measurements and/or GPP measurements used for calibration lack consistency across space. As a result, 

efforts to improve both the robustness of measurements of NIRV (e.g., better cloud filtering) and eddy 

covariance derived estimates of GPP (e.g., how GPP is partitioned from net ecosystem exchange, the 

mismatch between flux footprints and satellite measurements) are essential to minimizing site-level error.

A clear illustration of problems with the MODIS data used to calculate NIRV comes from

GF-Guy, an eddy covariance site in French Guyana. GPP fluxes at GF-Guy varied less than 20% month 

to month, while NIRV varied by a factor of three (Fig. 6a), which suggests errors in MODIS

observations at the site. A likely explanation is cloud contamination, as remote sensing in the tropics  is 

notoriously plagued by clouds. To investigate this, we used the multi-angle implementation of 

atmospheric correction for MODIS (MAIAC) data product, newly available for selected sites.

MAIAC uses atmospheric modeling to remove aerosols, sub-pixel clouds, and other artifacts from 
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MODIS satellite imagery (Lyapustin et al., 2011). The variability of NIRV dramatically decreased  with 

the MAIAC data (Fig. 6a). In fact, MAIAC-derived NIRV had a smaller dynamic range than measured 

GPP, strongly indicating cloud contamination of the baseline MODIS dataset at GF-Guy and, in all 

likelihood, throughout the tropics. Unfortunately, the 250 meter resolution MAIAC data needed to 

perform site-level calibration are not yet available for all FLUXNET sites. Cloud contamination in the 

MODIS data likely causes systematic underestimation of NIRV throughout the tropics, which in turn 

would bias our median global GPP estimate upward and make 147 Pg C y-1 a conservative estimate of 

global GPP.

Fundamental differences in plant physiology can also contribute to site uncertainty. One clear 

candidate is the difference in C3 and C4 photosynthesis. C4 plants fix CO2 more efficiently than C3 

plants, which should cause a steeper slope in the NIRV-GPP relationship, all else equal.  Tests  at a   trio 

of Nebraskan eddy covariance towers that annually rotate between soy (C3) and corn (C4) crops, reveal 

significant differences in the NIRV-GPP slope with crop type (Fig. 6b). Including information on the 

distribution of C3 and C4 vegetation across both wild and managed ecosystems should decrease 

uncertainty. It would also likely increase the median estimate of GPP, as C3 sites comprise the majority 

of the calibration dataset, further emphasizing the conservative nature of the 147 Pg C   y-1 estimate of 

GPP.

A third advantage of the NIRV approach is that it can be calculated from existing high-resolution and 

widely available satellite imagery. This makes NIRV immediately available for detailed studies and trend 

analyses at a wide variety  of spatial and temporal scales, from individual study sites to      the entire 

globe (Figs. 1 and 3). Our approach for estimating GPP from NIRV  could  also  be calculated for the full 

Landsat and MODIS records, as well as the 39-year record of the Advanced Very High Resolution 

Radiometer (AVHRR) series of sensors (Tucker et al., 2005).  Finally,  the ease of measuring NIRV 

allows researchers to make inexpensive, canopy-scale spectral measurements that are directly comparable 

with satellite data, facilitating efforts to bridge spatial scales.

To conclude, NIRV provides a new, largely independent approach for estimating global GPP with 

excellent performance at FLUXNET calibration sites. The median estimate from this approach, 147  Pg 

C y-1, is higher than recent estimate from bottom-up process-based models but is lower  than   global 

constraints from oxygen isotopes. Correcting known sources of uncertainty will likely increase the 

median estimate. In addition to high accuracy at calibration sites, the approach combines simple 
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calculation, robust error propagation, and the ability to utilize decades of historical remote sensing data. 

Future refinements of the NIRV-based approach can come from  improved  remote  sensing inputs and 

inclusion of additional physiological processes.
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Figure 1. NIRV explains a substantial portion of site-level GPP at both the monthly and annual timescale. 

Note the relatively large variation in monthly GPP estimates for low values of observed GPP, as 

compared to the near-zero intercept in the case of annual fluxes.

Figure 2. Model residuals of predicted GPP show no strong, systematic variations with site-level 

meteorological variables. As a result, using meteorological data in conjunction with NIRV reduces model 

generality (Table S3). This indicates that NIRV already captures the dominant influences of climate on 

canopy development.

Figure  3.  The A) global and B) latitudinal distribution of NIRV-derived GPP.  Estimates represent  the 

median of 1000 nearly independent upscalings of NIRV, while the full 95% credible range of GPP is 

shaded in grey for latitudinal estimates (latitude shown on the y-axis).  The latitudinal distribution  of 

annual GPP from FLUXCOM and BESS are shown for comparison.

Figure 4. Bayesian hierarchical modeling allows for per pixel error estimation. A) Uncertainty in GPP 

peaks in the tropics (especially the Amazon and Indonesia), where the credible range of GPP exceed 0.75 

kg C m-2 y-1. B) Uncertainty can be evaluated on a per pixel basis, where site-level uncertainty is typically 

largest.

Figure 5. The NIRV-GPP relationship for deciduous and evergreen canopies at numerous time scales. 

Deciduous canopies, which require more rapid payback on investments into light capture, exhibit the 

predicted pattern of more tightly tracking GPP at shorter time scales. Evergreen canopies, which amortize 

the cost of light capture over multiple years, can afford longer integration times when matching light 



3
1

This article is protected by copyright. All rights reserved

capture to the availability of other resources.

Figure 6. Parsimony allows for the investigation of sources of model uncertainty. A) Cloud 

contamination drives large monthly variations in MODIS collection 6 NIRV that are not matched by 

variations in NIRV. All monthly data from the FLUXNET2015 dataset shown in grey. B) Photosynthetic 

pathway predictably alters the NIRV-GPP relationship, as C4 plants have greater efficiency.



GPP Product
RMSE

(kg C m-2 y-1)
AIC

NIRV 0.36 1736
BESS 0.55 [1837, 1937]
FLUXCOM 0.20 2013
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